KNIME/Orange Data Preprocessing Audit Workpaper
Audit Focus Area
Evaluating risks in visual workflow tools for data preprocessing:
- GUI Opacity: Hidden transformations in visual interfaces
- Non-Human-Readable Exports: XML-based workflow definitions
- Reproducibility Gaps: Drag-and-drop operations without version control
Evidence Collection Methodology
1. GUI Pipeline Opacity
Risk Indicator | Investigation Method | Documentation Reference |
Buried node configurations | Right-click → "Configure" on each node | KNIME Node Description vs Actual Settings |
Hidden data flows | Check "Workflow Cohesion" metrics | Orange Canvas Connection Graph |
Default parameter risks | Compare node settings to company SOPs | KNIME Analytics Platform Cookbook |
Test Procedure:
- Generate workflow visualization (File → Export → Workflow Image)
- Cross-reference with node configuration dialogs
- Verify tooltips match actual operations
2. Non-Human-Readable Exports
File Type | Readability Issue | Mitigation Check |
.knwf (KNIME) | Binary blobs in XML | Search for config-key mappings |
.ows (Orange) | Minified JSON | Validate with python -m json.tool |
Workflow backups | ZIP with internal hashes | Checksum verification reports |
import xml.etree.ElementTree as ET
tree = ET.parse('workflow.knwf')
for config in tree.findall('.//config'):
if config.get('isHidden', 'false') == 'true':
print(f"Hidden config: {config.get('key')}")
3. Reproducibility Gaps
Reproducibility Risk | Detection Method | Test Case |
Manual filtering steps | Check for "Interactive" nodes | Re-execute with different screen sizes |
Unversioned workflows | .knwf timestamp analysis | Git history of workflow files |
Environment dependencies | "Python Script" node contents | requirements.txt cross-check |
Workpaper Template
GUI Opacity Findings
Node Type | Hidden Parameters | Impact | Severity |
"Rule Engine" | 5 unlogged rules | 12% data loss | High |
"Column Filter" | Manual selection | Bias introduced | Critical |
"Missing Value" | Default imputation | Wrong median | Medium |
Export Readability Findings
Workflow | "Human-Readable" Score | Key Opaque Elements |
Customer_EDA | 2/5 | 8 binary-encoded configs |
Risk_Modeling | 3/5 | Minified JSON conditions |
Reproducibility Findings
Workflow | Interactive Nodes | Environment Drift | Re-Run Variance |
Sales_Forecast | 3 sliders | Python 3.7 → 3.9 | 14% output delta |
Churn_Analysis | None | Missing R plugin | Failed execution |
Key Risks
- Critical: 22% of filtering decisions made via unreviewed interactive sliders
- High: Core imputation logic buried in 3-layer nested node configurations
- Medium: Workflow exports contain 18 binary-encoded parameter blobs
Recommendations
For GUI Transparency
from knime.workflow import WorkflowReader
wf = WorkflowReader.load('workflow.knwf')
wf.generate_markdown_docs(output_file='preprocessing_spec.md')
For Export Readability
orange-canvas --workflow-dump workflow.ows > workflow_audit.json
jq '.' workflow_audit.json > formatted_workflow.json
For Reproducibility
# KNIME snapshot
knime -application org.eclipse.equinox.p2.director \
-listInstalledRoots > knime_versions.txt
# Orange requirements
pip freeze > orange_requirements.txt
Auditor Notes
- Required Attachments:
- Workflow annotation screenshots
- XML/JSON export analysis reports
- Environment specification files
- Sign-off:
- Auditor: [Your Name]
- Workflow Owner: [Owner Name]
- QA Engineer: [QA Name]
- Date: [Date]
Standards References
- FDA 21 CFR Part 11 (Electronic Records)
- KNIME Best Practices Guide v4.7
- Orange Data Mining Documentation (Reproducibility Chapter)